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This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line
between the a priori theoretical considerations involved, and some methodological and em-
pirical non-deductive aspects that are often overlooked. The gauge argument is primarily
based on a general symmetry principle expressing the idea that a change of mathematical rep-
resentation should not change the form of the dynamical law. In addition, the ampliative part
of the argument is based on the introduction of new degrees of freedom into the theory accord-
ing to a methodological principle that is formulated here in terms of correspondence between
passive and active transformations. To demonstrate how the two kinds of considerations work
together in a concrete context, I begin by considering spatial symmetries in mechanics. I sug-
gest understanding Mach’s principle as a similar combination of theoretical, methodological
and empirical considerations, and demonstrate the claim with a simple toy model. I then ex-
amine gauge symmetries as a manifestation of the two principles in a quantum context. I fur-
ther show that in all of these cases the relational nature of physically significant quantities can
explain the relevance of the symmetry principle and the way the methodology is applied. In
the quantum context, the relevant relational variables are quantum phases.
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1. Introduction

The effectiveness of symmetry considerations in contemporary physics remains

puzzling even after a century filled with remarkable achievements. The heart of

the matter, it seems to many, is the far-reaching role played by theoretical and math-

ematical considerations in justifying the way laws are formulated. This exceptional

emphasis on a priori considerations appears to leave little room, if any, for under-

standing the form of the laws based on properties of the physical world.

The ‘ghosts’ in the title of this article refer to themetaphor used by EugeneWigner

to explain the concept of gauge. Wigner ([1964]) compared gauge fields to ghosts

that are artificially placed in a physical theory. A change in the coordinates of the

ghost does not change the physical situation. Thus the introduction of the ghost cre-

ates a formalism in which every physical situation has many equivalent descriptions

differing only in the location of the ghost. Gauge symmetries are analogous to the

indifference of the theory to the location of the ghost.
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Nevertheless, the concept of gauge has gradually become a cornerstone of mod-

ern physics, as a symmetry requirement that determines the form of the fundamental

laws of interaction and introduces force-carrying particles. The common Wignerian

conception of gauge as an artificial matter of mere representation or convention ap-

pears to conflict with its major consequences (Teller [1997]; Martin [2003]). The

confusion caused by this conflict is often reflected in the way gauge is presented

in textbooks, where, for example, the existence of force-carrying particles and their

properties is deduced from the freedom ‘to choose one phase convention in Paris and

another in Batavia’(Quigg [2013]).

This conflict is the basis of several related foundational questions regarding gauge

symmetries that have been raised by different thinkers (Brown [1999]; Lyre [2000];

Teller [2000]; Redhead [2003]; Ben-Menahem [2012]). Most of these worries in-

volve the ‘gauge principle’ (also referred to as the gauge argument), namely, the in-

troduction of an interaction into a theory of a free field by imposing the demand that

a global symmetry would hold as a local symmetry.

This article presents the gauge principle as the result of three elements. The first is

a general symmetry principle. The second is an ampliative step where additional de-

grees of freedom are introduced into an existing theory that does not satisfy the sym-

metry principle, so as to create a new theory that does. There is nothing a priori in

this step; it requires empirical input. The third element that turns out to be essential

for understanding the gauge principle is the structure of quantum theory.

The symmetry considerations used in gauge theories are presented as a manifes-

tation of a general symmetry principle that is also found in other contexts in physics.

Section 2 takes advantage of the clarity and simplicity of spatial degrees of freedom

in classical mechanics to formulate this general symmetry principle and demonstrate

how it can give rise to arguments about the construction of theories.

It turns out that this symmetry principle is only satisfied in theories that take all

relevant degrees of freedom into account. When a successful theory does not satisfy

this principle, I suggest seeing this as a sign that its scope has to be extended. Sec-

tion 2.2 formulates a methodological principle that guides the construction of an

extended theory, and presents Mach’s principle as a manifestation of this method-

ology. Section 3 uses a concrete toy model to demonstrate the relation between

the symmetry principle and the methodological principle. Section 4 presents the

gauge argument as a manifestation of the two principles in a quantum context.

Furthermore, it is demonstrated that in the cases studied the relational nature of

fundamental dynamical quantities could be the fact in the world that makes the sym-

metry principle relevant and the argument successful. This account of gauge sym-

metries therefore supports the relational approach to gauge recently presented by

Rovelli ([2014]).

Section 5 concludes by connecting the presented account to the philosophical

discussion regarding the gauge principle, and also discusses the implications of
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the account given here for the issues of the interpretation of gauge symmetries and

the possibility of observing them directly.

2. Spatial Symmetries and Their Methodological Role

Symmetry considerations based on the invariance properties of the dynamics are a

powerful tool for constructing theories, as well as for interpreting them. The goal of

this section is to motivate and formulate a symmetry principle and a methodological

principle. In both cases, the starting point is arguments related to the debate about

the ontology of space. Substantivalists consider coordinate systems as a representa-

tion of physical space, an actual physical object. Relationists, in contrast, consider

them as no more than an auxiliary mathematical structure that allows for a conve-

nient description of the spatial relations between material objects, which they con-

sider as the actual physical quantities. Sections 2.1–2.2 present several key argu-

ments (of both sides) in terms of transformations and symmetries, and generalize

to formulate the two principles. Section 2.3 further elaborates on the role of frames

of reference.

2.1. A symmetry principle

There are infinitely many ways to label points of space by coordinates. The different

coordinate systems are connected by coordinate transformations. Some coordinate

transformations may be regarded as nothing more than a change of description, a

replacement of one mathematical representation of the set of possible physical sit-

uations with a different mathematical representation of the same set.

Which transformations should be regarded as a change of representation is a mat-

ter of one’s ontological commitments. For example, consider a form of Leibnizian

relationism according to which the only meaningful physical variables are relative

distances between physical objects. The spatial symmetry group that is entailed by

this view is the set of transformations that do not change the values of these rela-

tions, namely arbitrary rotations and translations

~r→ A tð Þ~r 1 ~R tð Þ: (1)

(Here A(t) and ~R(t) are a time-dependent orthogonal matrix and a vector in space

respectively.)1 Coordinate transformations that preserve the postulated spatial struc-

ture, and are therefore regarded as a change of representation, would be referred to

1 A different form of relationism, which considers the physical variables to be relative distances together
with relative velocities, entails a smaller symmetry group; in this case, rotations have to be excluded and
A(t) above becomes fixed in time.
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as spatial symmetries. Similarly, coordinate transformations that preserve spacetime

structure would be referred to as spacetime symmetries.2

Earman ([1989]) suggested the following symmetry principle: any spacetime sym-

metry of a theory is a dynamical symmetry of the theory. General covariance in gen-

eral relativity is an ultimate manifestation of the principle. Indeed, the general prin-

ciple of relativity was presented by Einstein (for example, Einstein [1919]) along the

same lines. Einstein’s justifications, as well as Earman’s arguments for the principle,

are fundamentally a priori in nature.

This symmetry principle can be similarly employed to argue about Newtonian

mechanics. The actual spatial symmetry group of Newton’s laws of motion is the

Galilean group:

~r→ A0~r 1 ~R0 1~vt: (2)

It allows for fixed rotations and translations (characterized by a fixed orthogonal ma-

trix A0 and a fixed vector R0), and boosts at some constant velocity~v. This group is

significantly smaller than the spatial relationist group represented by Equation (1).

Adopting a relationist view of space thus leads to a violation of the symmetry prin-

ciple. A transition to a rotating reference frame, for example, while preserving all

relative displacements, changes the form of the laws of motion through the introduc-

tion of centrifugal forces. Therefore the transition cannot be regarded as a change of

representation, in contrast to the relationist stance.

This argument against relationism can easily be seen as a version of Newton’s

bucket argument, one that is expressed in terms of passive rotations. The original

argument was used by Newton ([1999]) to support substantivalism. Once the postu-

lated ontology includes absolute space, a transformation of the coordinates of the ob-

jects (such as the above rotation) does not stand for a change of representation, but

for a change in the absolute motion of the objects with respect to absolute space. The

fact that it alters the dynamical law is therefore not surprising (and is not a violation

of the principle). This version of the argument is a straightforward application of the

symmetry principle.

Wigner ([1964]) has described electromagnetic gauge symmetry as a similar con-

nection between change of representation and the dynamical law: ‘two different de-

scriptions of the same situation should develop, in the course of time, into two de-

scriptions that also describe the same physical situation’. Wigner’s view, according

to Martin ([2003]), significantly contributed to the modern textbook presentation of

the gauge principle. Nakahara ([2003]), for example, formulates it simply as ‘phys-

ics should not depend on how we describe it’.

In order to formulate a general principle, I generalize from Earman’s principle for

spacetime symmetries using the concepts of kinematics and dynamics. The term

2 An extensive discussion of spacetime symmetries and their relation to spacetime structure is given by
Pooley ([2013]). For simplicity, I focus below on the spatial part of the transformations and avoid the
temporal part whenever possible.
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kinematics is used here in a broad sense to refer to the representation of the possible

states of a system according to a given physical theory. A kinematical symmetry is

an automorphism of the kinematical structure.3 Kinematical symmetries are there-

fore passive transformations, a change in the mathematical labels of the different

physical states postulated by the theory. In contrast, dynamical symmetries are trans-

formations of the values of the dynamical variables, under which the form of the dy-

namical law remains invariant.

Using the above definitions, I formulate a general symmetry principle.

Symmetry Principle: Every kinematical symmetry of a theory should also be

a dynamical symmetry.

The above passive version of Newton’s bucket argument, Einstein’s general princi-

ple of relativity, and the textbook version of the gauge argument can all be regarded

as expressions of this principle.

2.2. A methodological principle

There are different ways to apply the above symmetry principle. In this section, I

formulate a methodological principle that supports the construction of theories that

satisfy it. I start by describing Mach’s analysis of Newton’s bucket experiment in

terms of transformations and symmetries, and generalize from this example.

The passive version of Newton’s bucket argument given in the previous section

is based on a comparison of two descriptions of one situation. The original bucket

argument by Newton, in contrast, was based on a comparison of two different physical

situations: a vessel of water at rest versus the vessel after it has gradually been rotated

from rest to a state of uniform angular velocity. The argument against relationism is

based on noting that in both cases there is no relative motion between the water and

the bucket, while the shape of the surface of the water turns out to be different. The

outcome is thus not determined by the relative motions between the components of

the system. It has to be determined by the motion with respect to something else,

which Newton believes to be absolute space.

Mach’s ([1919], p. 232) famous reply was that the bucket experiment ‘simply in-

forms us, that the relative rotation of the water with respect to the sides of the vessel

produces no noticeable centrifugal forces, but that such forces are produced by its

relative rotation with respect to the mass of the earth and the other celestial bodies’.

He therefore suggests to replace Newton’s laws of motion with modified laws that

would be constructed to reflect this postulated origin of centrifugal forces.

According to the Machian view, the transformation in Equation (1) is, indeed,

no more than a change of representation. The reason that it is not a symmetry of

3 This definition is a special case of the definition given by Redhead ([2003]) to passive symmetries, and is
also close to Healey’s ([2009]) definition of ‘theoretical symmetries’.
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Newtonian mechanics is that the latter theory is an approximate description of small

subsystems of the universe. Thus, the description of the bucket and the water in

terms of Newtonian mechanics does not take into account the influence of some rel-

evant objects (the celestial bodies). The full symmetry would only be revealed by the

more fundamental dynamical law, which would take into account all of the relevant

degrees of freedoms.

In order to characterize Mach’s suggestion in terms of transformations, we shall

have to consider active transformations. The basic definition of active transforma-

tions is transformations that map the set of possible states to itself, thus replacing

one physical configuration with a different configuration (and are therefore, gener-

ally, non-symmetries).4

Newtonianmechanics is not invariant under passive rotation. In the transition from

describing a mechanical system using one spatial frame of reference to a description

using a second frame of reference that is rotating with respect to the first, the form of

the equations of motions change due to pseudo-force terms. The Machian step pos-

tulates an interaction between the described system and external objects; when the

system is actively rotated with respect to the external objects, the system experiences

an actual force, identical in its form to the pseudo-force in the passive case.

Obviously, there is no a priori guarantee that the world would behave this way. In

Mach’s case, he did not even formulate a theory of such interaction. What he did

show is that modifying the dynamical law in this way, would result in a truly rela-

tionist theory, a theory in which Equation (1) is indeed a symmetry transformation.

In other words, we start from a theory that violates the symmetry principle, and con-

struct a theory that satisfies it by postulating the existence of active transformations

that alter the dynamics in a particular way.

The active transformation, in this case, is not a change in the state of the original

system, but rather a change in the state of the entire universe. More precisely, a

change in the relations between the system (the bucket and the water) and external

objects (the celestial bodies). The relevant active transformations are therefore only

defined given the identification of a ‘system’ and some ‘external object’. Such a par-

tition is natural in the case of transition from Newtonian mechanics of localized me-

chanical systems to a possible Machian theory of the universe. The crux here is the

postulated correspondence of every passive transformation of the system, to an ac-

tive transformation of the system with respect to the external object.

4 Amajor source of the common confusion between passive and active transformations is that inmany cases
active transformations take the same mathematical form as passive ones. Furthermore, in some cases it
would be a matter of interpretation whether a given transformation of the variables is active or passive.
For example, someone who believes in the existence of Newtonian absolute space would interpret a fixed
translation~r→~r 1 ~R0 as an active transformation of all material objects with respect to absolute space
(every object is now in a different part of space, therefore the physical state has changed). But if absolute
space does not exist, this transformation is just a passive transformation of the coordinates. In many other
cases, the transformation would be observable and its active nature would be apparent. A simple example
is the translation of a physical system with respect to other material objects.
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Provided the empirical success of Newton’s laws of motion, and that their spatial

symmetry group is the Galilei group in Equation (2), we have encountered two strat-

egies for satisfying the symmetry principle. The first is the introduction of unobserv-

able Newtonian absolute space, thus reducing the kinematical symmetry group to the

desired group. The second is the Machian step that extends the dynamical symmetry

group by introducing additional degrees of freedom. Clearly, the latter strategy is the

one that is more likely to yield empirically testable predictions.5 The Machian step

and the gauge argument, we shall claim, both apply the following methodological

principle, relevant when a theory successfully describes a given physical system, but

does not satisfy the symmetry principle.

Methodological Principle: For every kinematical transformation of the system,
postulate the existence of an active transformation of the system with respect to
an external object, that induces a change of an identical form in the dynamics.

This methodological step is an amplification of the scope of the theory: from a the-

ory that describes a given system, to a broader theory that describes the coupling of

that system to something external.

This methodology is somewhat different fromMach’s original intention, and also

from various other meanings that are attributed to the term Mach’s principle (see

Barbour and Pfister [1995], p. 530). In particular, the holism that exists in aMachian

universe is not a necessary feature of relational theories, nor is it necessary for my

purposes. It is enough that the relations between parts of a system and some external

object are physically relevant.

Any successful application of the methodological principle would have to take

empirical input into account. The methodological principle conjectures the exis-

tence of relevant physical degrees of freedom that the original theory did not take

into account. Empirical knowledge of the world is then required in order to associate

these theoretical additional degrees of freedom with actual physical objects (such as

celestial bodies). The new theory that describes the coupling of the original system

to these objects can then be put to further empirical tests.

Note that even when a given theory does not satisfy the symmetry principle, it is

possible that some kinematical symmetries would happen to be dynamical symme-

tries as well. The corresponding active transformations would therefore induce no

change in the dynamical law. These transformations change the state of the given

system with respect to its environment, while at the same time preserving the dy-

namics of the system. I shall refer to these symmetries as active symmetries (see

a similar definition in Brading and Brown [2004]). For example, passive Galilean

boosts in Equation (2) are dynamical symmetries of Newtonian mechanics. The cor-

responding active transformations put a given system in motion with respect to its

5 Symmetry considerations were indeed useful for the construction of Machian theories of mechanics. The
most famous ones are those by Barbour and Bertotti ([1977], [1982]); see also (Huggett and Hoefer
[2018], Section 8.2) for a brief discussion of their empirical testing.
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environment as described by the famous ship experiment (Galilei [1967]). In this ex-

ample the transformed system is a ship, first at rest with respect to the shore, and then

sailing at a constant velocity. This transformation is a symmetry since the dynamics

of the ship (describing the motion of objects on board with respect to the ship) is not

affected by the change.

2.3. A ghost in classical mechanics

The controversy regarding the nature of space shows that classical mechanics is in-

herently haunted by a ghost of the same kind as described byWigner. Here the ghost

is the frame of reference. It does not correspond to a directly observable physical

object, and it can be moved around without changing the physical situation. New-

ton’s substantivalist way of dealing with the ghost is to let it take on a life of its

own, in the form of absolute space. In contrast, Leibnizian relationism attempts to

exorcise the ghost, if not from the formalism then at least from the ontology. It is

very likely that this motivation was shared by Mach when he suggested that accel-

erations are defined with respect to all the masses in the universe.

The suggested understanding of Mach’s principle as an instance of the presented

methodological principle is somewhat different. The presence of the ghost in the

Newtonian formalism in an indication of the existence of a relevant physical object

ignored by the theory. Instead of eliminating the ghost, Machian thinking first lets it

take on a life of its own, this time in the form of an observable physical object with

dynamical properties of its own. This object, the ‘celestial bodies’, defines the frames

of reference in which Newton’s laws hold (at least as an approximation).

It is important to note that sometimes a frame of reference is just a frame of ref-

erence, a formal auxiliary component and nothing more. A theory that employs such

a frame of reference would essentially have kinematical symmetries, which reflect

the equivalence of different choices of frame of reference. In this case, the kinemat-

ical symmetries would all correspond to dynamical symmetries, and the symmetry

principle would be satisfied. This is an indication that the ghost is harmless, and can

be let alone.

3. A Toy Theory

Newtonian mechanics does not satisfy the symmetry principle presented in Sec-

tion 2. I begin this section by presenting a simple toy theory that does. The theory

is inspired by the ‘minimal prototype of a gauge theory’ by Rovelli ([2014]) and

closely resembles it. I will then show how the symmetry principle together with

the methodological principle can help physicists, who live in the universe described

by the theory but only have partial knowledge of it, discover this theory.

Consider a one-dimensional universe in which N 1 1 point particles are moving

and interacting with each other. Let us assume that it is a truly relationist universe:
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the dynamical variables are relations aij, each corresponding to a pair of particles.

Their possible values define the configuration space. Their temporal derivatives

are denoted _aij. In this simple one-dimensional universe, it is also possible to choose

N 1 1 real position variables xi such that for all i and j we get aij 5 xi 2 xj.

Kinetic energy here would be defined for every pair of particles. For the i-th and

j-th particles, with masses of mi and mj, the kinetic energy is:

Tij _aijð Þ5 1

2

mimj

m
_a2
ij, (3)

with m denoting a universal mass constant. This kind of kinetic energy deserves to

be called an interaction, as it is not inherently different from the way particles inter-

act through potential energy that depends on their relative distance V (aij). For now, I

also assume that the masses of all the particles are identical mi 5 m for all i. The

Lagrangian is therefore obtained by summing over the pairs of particles:

L0 5 o
j<i

1

2
m _a2

ij 2 V aijð Þ
� �

(4)

5 o
j<i

1

2
m _x i 2 _x jð Þ2 2 V xi 2 xjð Þ

� �
: (5)

The variables xi correspond to the positions of the particles in relation to an arbitrary

frame of reference. Unlike in Newtonian mechanics, this frame of reference does not

provide an absolute notion of acceleration. The Lagrangian in Equation (5) is invar-

iant under arbitrary time-dependent translation of the frame of reference:

xi → xi 2 l tð Þ: (6)

Clearly, this symmetry does not describe a property of the world. It originates in the

way the world is represented in the theory using an artificial frame of reference, a

ghost in the kinematics with no dynamical role. This symmetry merely expresses

the trivial equivalence of Equation (4) and Equation (5), the possibility of eliminat-

ing some of the mathematical structure of Equation (5). It is a kinematical symmetry,

as well as a symmetry of the dynamical law. The symmetry principle is thus satis-

fied. The symmetry exists because of the way the system is represented. This choice

of representation is no more than a matter of convention and convenience. No phys-

ical object is hiding behind this ghost, and no new physical knowledge can be ob-

tained through it.

The equations of motion derived from Equation (5) are:

€x i 2
1

N oj≠i €x j 5
1

Nm

∂
∂xioj≠i V xi 2 xjð Þ: (7)

Unlike the Newtonian absolute notion of acceleration, the acceleration of a particle

in this theory is measured in relation to the centre of mass of all other particles. This
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point, together with the invariance in Equation (6), distinguishes this theory from

Newtonian mechanics.

Nevertheless, the physics of some subsystems in this universe could be approx-

imately Newtonian. To see this let us add an object of mass M that is external to

the system. This object can be thought of as a representation of the totality of ‘ce-

lestial bodies’ surrounding the system, or just a relevant external object that interacts

with the system’s particles. The relation ci ; xi 2 X denotes the spatial relation be-

tween the i-th particle and the external object. For simplicity, I assume that there is

no interaction between the particles and the external object other then the kinetic

coupling. The new Lagrangian is therefore:

L1 5 L0 1o
i

1

2
M _c 2

i

� �
5 o

j<i

1

2
m _x i 2 _x jð Þ2 2 Vij xi 2 xjð Þ

� �

1o
i

1

2
M _x i 2 _X
� �2� �

: (8)

The equation of motion for xi is similar to Equation (7), but the acceleration is now

measured in relation to the new centre of mass:

€x i 2o j≠i m€x j 1 M €X

M0

5
1

M0

∂
∂xioj≠i V xi 2 xjð Þ, (9)

with M0 5 Nm 1 M.

To see the relevance of this example, let us take the perspective of physicists who

live and conduct their experiments within the N 1 1 particle system. They may be

unaware of the existence of any external object, or of its coupling with the system, so

the variable X will not appear in their theories. They would find that the law of mo-

tion takes a simple form in some preferred frames of reference (we know that these

are the ones in which €X 5 0). In these frames of reference the physicists would find

that their observations are explained by the law:

€x i 2o j≠i m€x j

M0

5
1

M0

∂
∂xioj≠i V xi 2 xjð Þ: (10)

(If the second term is negligible this law becomes completely Newtonian. If some

accelerations are sufficiently large, however, the second term may become signifi-

cant and the physicists could discover it with their experiments.)

While the equations of motion in Equation (10) only contain the variables fxig,
they are not invariant under the general time-dependent transformation of the vari-

ables in Equation (6). The kinematical symmetry is now not a dynamical symmetry.

In a general frame of reference an extra term has to be added, theMachian version of

a pseudo-force. (From the way Equation (9) transforms under Equation (6) it can be

obtained that this force is equal to 2 M
M0

€l, where l(t) defines the transformation

from a reference frame in which Equation (10) holds.)
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The ghost frame of reference that haunts the theory in Equation (10) is thus more

than a matter of harmless convention. The fact that the dynamical symmetries are a

small subset of the kinematical symmetries is the indication of that. This violation of

the symmetry principles is the starting point of the methodology suggested here. Its

goal is to replace the theory that does not satisfy the symmetry principles with a new

theory that does satisfy them and also has greater predictive power.

At this point, the physicists who apply Equation (10) can follow the methodolog-

ical principle. For every passive transformation of the form in Equation (6), they

postulate an active transformation of the same form. It is easy to see that the active

transformation does not change the internal relations that describe the system. The

change that is induced by this active transformation must be a change in the state of

the system with respect to an external object. In the simplest case the external object

would correspond to a single dynamical variable X. The transformation in Equa-

tion (6) is an active transformation of the system with respect to the external object

if the positions xk of the particles with respect to the arbitrary frame of reference are

replaced by their position with respect to the external object:

xk → xk 2 X (11)

Indeed, this step generates (after some algebra) the correct equations of motion in

Equation (9). This method therefore allows the physicists to obtain the law for

the interaction of the particles that can be directly observed, with an external object.

In order to formulate a complete theory, observations and experiments are still re-

quired. Observations are required in order to associate the theoretical degree of free-

dom X with some physical objects. Experiments would allow measurement of the

mass M.

Finally, I note that the passive transformation for the extended theory is an exten-

sion of Equation (6) that is applied to both the system and the external object, and

maintains the relations between them:

xi → xi 2 l tð Þ, X → X 2 l tð Þ: (12)

This example is to show that if the universe were simple andMachian, then applying

Mach’s principle would closely resemble the way the gauge principle is applied. In

both cases, an interaction-free theory whose dynamical symmetry group is smaller

than the kinematical symmetry group is extended to take an additional physical ob-

ject into account, together with its dynamical properties. The extended theory has an

extended symmetry that is now both kinematical and dynamical.

4. Quantum Theory and Gauge Symmetries

4.1. The representations of a quantum system

Let us consider a quantum system that remains in a pure state at all times. Quantum

theory postulates that the possible states of the system correspond to points in a
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projective Hilbert space. This state space can be represented using different bases of

the Hilbert space. For every two bases there is a unique unitary transformation that

connects them.

Given an orthonormal basis fjfjig of the Hilbert space, each state jwi can be

characterized by the coefficients fcjg of the expansion jwi 5 ojcjjfji. The unitary
transformationUba defines a passive transformation from a representation in one ba-

sis fjf(a)
j ig to a representation in another basis fjf(b)

j ig in the sense that it defines a

transformation matrix T (Uab) that transforms the values of the coefficient used to

represent any state in the first basis to the coefficients that would be used to represent

the same state in the second basis. The matrix elements are given by Tjk(Uba) ;
hf(a)

j jU y
bajf(a)

k i 5 hf(b)
j jf(a)

k i and the transformation is:

c(b)j 5 o
k

Tjk Ubað Þc(a)k : (13)

The bases used to represent a system are not internal to it. A physically meaningful

basis consists of the eigenstates of an Hermitian operator that represents an actual

measurement that can be performed on a system by an external apparatus. When

we say, for example, that the spin state of an electron is j↑i, we are making a state-

ment about the relation between the direction of the spin of the electron and an ex-

ternal physical object that defines the z-axis.

Any operator B̂ can be represented in terms of the basis states: B̂5ojkbjk jfji hfk j.
A full passive transformation of the representation of the quantum state together with

the state of the reference objects is a change of representation jfji→U jfji and
hfk j→ hfk jU y that is applied to all appearances of the basis states. As a direct con-

sequence, all quantum states and operators transform:

jwi→U jwi, B̂→UB̂U y: (14)

Any unitary transformation,U, also defines an active transformation that changes the

state of a given system: jwi→U jwi, an unitary transformation that is applied to a

given state. It represents an active change in the physical state of the system in rela-

tion to the reference that defines the operators. This transformation can be equiva-

lently written in the Heisenberg picture as a transformation B̂→UB̂U y of the oper-

ators, rather than of the state jwi.

4.2. Relative variables: quantum phases

In the example given in Section 3 it is manifestly clear how the relational nature of

the variables gives rise to the multitude of representations and therefore to symmetry

transformations. The goal of this section is to show how the multitude of represen-

tations of quantum systems and the transformations between them that were pre-

sented in the previous section also manifest the relational nature of fundamental

physical variables: quantum phases.
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To begin with, note that it is the relational nature of quantum phases that dis-

tinguishes them from any classical analogue. A classical sinusoidal travelling wave

on a string is described by the function: w1(x, t) 5 A sin (k(x 2 ct) 1 J1). Once a

particular point is marked as the origin, and a particular moment of time is denoted

t 5 0, the phase J is well defined (up to addition of an integer number of 2p). An

interference pattern would appear when this wave encounters a second wave:

w2(x, t) 5 A sin (2k(x 1 ct) 1 J2). The phase difference J1 – J2 determines the

resultant pattern (which points on the string would be nodes and anti-nodes). This

phase difference however, does not represent a fundamental relation: each of the

two phase factors J1 and J2 represents an independent quantity that can be under-

stood as a relation between the wave on the string and the spatio-temporal frame of

reference. The phase factor J1, for example, could have been measured from the

form of the corresponding travelling wave even in the case where it is the only wave

on the string, and there is no interference at all. The same holds for the classical two-

dimensional analogue, the double slit interference experiment, in which the wave

from each source (or slit) can be described by a phase factor that is measurable prior

to any interference.

The case is very different in quantum mechanics. While quantum phases are re-

sponsible for the wave-like behaviour of quantum particles in interference experi-

ments, the absolute phase attributed to an individual wave-packet has no meaning

in the theory and cannot be measured. If in a quantum double-slit experiment, for

example, only one slit is open, then it is meaningless to talk about the value of

the phase of the wave-function that propagates though the slit, and it is impossible

to measure it. The relative phase between the two slits makes a difference only once

interference has taken place. That is why it is justified to say that the phase is a fun-

damental relation that describes the quantum particle. It is an internal relation be-

tween the different components of the wave function, not a relation between a par-

ticular component and some reference frame imposed by an external observer.

Nevertheless, we commonly find it more convenient to refer to quantum phase

relations as differences between two phase factors, represented by numbers on the

real axis. But in the quantum case this convention should be seen as a matter of mere

convenience. This is reflected by the phase shift symmetry of the theory. Namely,

the quantum states jfi and eiJjfi are commonly assumed to represent the same phys-

ical state for all values of J.

Each physical state therefore has infinitely many (normalized) representations be-

cause the formalism uses absolute values to represent a relational property. This

seems similar to the classical example of Section 3. The interesting difference stems

from the quantum notion of superposition of basis-states. What do we get if we ap-

ply the transformation jfi→ eiJjfi to the basis-states of a quantum system? The an-

swer is that we get no more and no less than the unitary transformations described in

the previous section.
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Given an arbitrary basis fjfjig, it is easy to see that a phase transformation of the

basis-states,

jwi 5 o
j

cjjfji→o
j

eiJj cjjfji ; U jwi, (15)

is, by definition, unitary (U yU 5 1). Furthermore, for every unitary transformation

U there is a basis fjf(U )
j igj in which it is diagonal and takes the form of Equation (15).

In terms of passive transformations, that means that every change of representation

(from one basis to another) can be described as phase transformation of the basis-states

of a particular basis.

Yet, quantum phases are meaningful physical variables. The two superpositions

jWAi 5 c1jw1i1eiJA c2jw2i and jWBi 5 c1jw1i1eiJBc2jw2i (with complex coefficients

c1, c2 and real JA ≠ JB 1 2pn) represent different physical states. A temporal evo-

lution in which jWAi is transformed into jWBi changes the observed properties of the
system. This change is described by the theory with respect to some external refer-

ence. The external reference defines the meaning of the operators by identifying the

basis-states with elements that are external to the system, such as points on a screen

or the direction of an external field. The unitary temporal evolution of a quantum sys-

tem can always be described as such an active transformation—a shift between the

relative components of the state in some preferred basis. This basis consists, of course,

of the eigenstates of the Hamiltonian.

4.3. Gauge transformations

Unitary transformations induce relative phases between the states of a particular ba-

sis. If this basis is the position-basis, the transformation is a gauge transformation.

This understanding of gauge transformations together with the principles and meth-

odology presented in Section 2 will be used in this section to understand the simplest

example of a gauge theory: the coupling of a quantum particle to a classical electro-

magnetic field.

Consider a quantum particle whose state is described by a wave function

w(~x, t) 5 h~xjw(t)i (ignoring the spin degree of freedom). A transformation of the

form in Equation (14) that is diagonal in position-basis is a passive local phase trans-

formation. The transformation is a formal replacement of the position-basis eigen-

states with eigenstates that only differ by phase defined by an arbitrary smooth func-

tion L(~x, t):

j~x i→ j~x 0 i 5 U j~x i 5 eiL x,tð Þj~x i: (16)

The observable quantities remain unchanged as long as the replacement is con-

sistently applied to all appearances of the basis states. The values of the wave func-

tion do change, as well as the form of the operators, in particular the momentum

operators:
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w ~x, tð Þ→ w0 ~x, tð Þ 5 h~x 0jw tð Þi 5 e2iL ~x,tð Þw ~x, tð Þ, (17)

pi → p0
i 5 UpiU

y 5 pi 2 qi ~x, tð Þ, (18)

with qi(~x, t) 5 ℏ ∂
∂xi L(~x, t). This transformation of the momentum operators is not

an additional requirement. It expresses the same replacement of basis states, and

is obtained by a straightforward calculation using Equation (14).

Hence, when it comes to local phase transformations, a significant physical var-

iable does depend on the choice of representation: the momentum operator. Dirac

had noticed this and pointed out that ‘by a suitable change in the phase factors,

the function [L][. . .] can be made to vanish and [the] equations [ pi 5 2iℏ∂=∂xi]
are made to hold’ (Dirac [1958], p. 93, brackets indicate adjustment of notation).

While this is true from the point of view of anyone whose primary interest is to ob-

tain predictions from the Schrödinger equation, it is an important clue for the right

way of extending the scope of the theory. The way the momentum operator trans-

forms under the kinematical symmetry in Equation (16) indicates that this transfor-

mation is not a dynamical symmetry. The Schrödinger equation changes its form:

iℏ
∂
∂t
w ~x, tð Þ 5 oi p

2
i

2m
w ~x, tð Þ→ iℏ

∂
∂t
w ~x, tð Þ 5 oi pi 2 qi ~x, tð Þð Þ2

2m
w ~x, tð Þ: (19)

According to the methodological principle, an extended invariant theory may be

constructed in which a transformation of the same form would describe an active

change in the state of the particle with respect to some external degrees of freedom.

In the simplest case these additional degrees of freedom constitute a classical field. A

transformation of the form in Equation (18) can be regarded as an active transforma-

tion with respect to the field if the field couples to the momentum operators. This

coupling is achieved by the substitution:

pi → pi 2 qi ~x, tð Þ: (20)

This expression should not be confused with the transformation in Equation (18).

The q’s that appear in the two expressions, as well as the arrows represent very dif-

ferent things. In Equation (18), we simply express the momentum operator in a dif-

ferent basis of the Hilbert space. The notation p0 stands for the same momentum op-

erator of the system, which is expressed in the RHS of Equation (18) in terms of its

effect on the ‘old’ basis states. Its components therefore satisfy the known momen-

tum commutation relations: ½p0
i, p0

j� 5 0. These commutation relation hold under the

condition: ∂qi

∂xj 2
∂qj

∂xi 5 0 (see Bohm et al. [2013], pp. 22–3). This condition is auto-

matically satisfied by the definition qi(~x, t) 5 ℏ ∂
∂xi L(~x, t).

The transformation in Equation (20), in contrast, means that in order to understand

the way the particle may interact with other physical objects, I attempt to extend this

theory by replacing the appearance of the momentum in the dynamical law with a
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relation between the momentum and an external field. In this case, the success of the

attempt is not guaranteed by the mathematics; it has to be verified by experiment.

In order to do so, field q has to be recognized as some particular physical field.

Indeed, if we identify field q as proportional to magnetic vector potential ~A, and

use the charge of particle q as a coupling constant such that ~q 5 q
c
~A, then we get

the well-established Schrödinger equation for a charged particle under electromag-

netic influence. The extended particle1 potential system is invariant under the pas-

sive gauge transformation in Equations (16)–(18) when it is accompanied by
q
c
~A→ q

c
~A 1 ℏ∇L. The replacement of the gauge-dependent momentum variable

with an invariant variable representing the relation between the system and the field

thus extends the kinematical symmetry of the particle to the larger particle and field

system, making it a dynamical symmetry as well.

In this case, the components of the momentum operator of the particle~p commute,

but there is no a priori reason to assume that so would the components of the com-

bination pi 2 qi(~x, t). They don’t commute in any point of space in which we have a

magnetic field. Furthermore, the identity qi(~x, t) 5 ℏ ∂
∂xi L(~x, t), which in the passive

case is satisfied by definition (since we begin with a well-defined single-valued trans-

formation), can no longer be met in the presence of a magnetic flux. The immediate

consequence is the appearance of measurable non-integrable phase factors.

With this understanding of gauge, the meaningful physical variable appears to be

(~p 2 q
c
~A), which is interpreted as the relation between the momentum of the particle

and the field. The interpretation of this relation as a physical quantity opens the door

to an interpretation of electromagnetism that differs from the common approaches

(Belot [1998]). The dependence of the coupling of the particle and the field on this

relation is analogous to the way the inertia in the example given in Section 3 depends

on the relation (xi 2 X ).

Due to the relational nature of quantum phases, the choice of a spatial frame of

reference only determines position-basis-states up to a phase factor at each point.

There are therefore infinitely many ways to define a basis in which the state of the

particle can be represented. The law governing the dynamics of the particle under

the external influence is obtained by replacing the momentum operator with the re-

lation between the momentum and an external field. This method allows us to cor-

rectly guess the form of the dynamical law that describes the effect of the interaction

on the particle.

5. The Gauge Argument

5.1. The gauge argument: what makes it work?

The formal replacement, ∂m →Dm ; ∂m 1 i q
ℏ c Am, of partial derivatives with gauge-

covariant derivatives is known to successfully introduce the electromagnetic influ-

ence into the free particle Schrödinger equation iℏ∂tw 5 2 ℏ2

2m ∇
2w, as well as into
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the Dirac equation for a spin-half particle (iℏgm∂m 2 mc)W(x) 5 0. Textbooks attri-

bute this replacement to the requirement of local gauge covariance, the requirement

that the global phase transformation remains a symmetry of the dynamics when it is

replaced by a local (coordinate-dependent) transformation. This is the simplest appli-

cation of the gauge principle, first applied by Yang andMills ([1954]), and by nowwell

known for its major role in the derivation of the dynamics of elementary interactions

and the properties of force carriers.

The gauge principle is commonly justified by the freedom to change convention

or a frame of reference. The roots of this view go back toWigner ([1964], [1967]; see

Martin [2003]), who presented gauge transformations as a passive invariance prop-

erty of some particular dynamical laws of interaction (in contrast to the geometric

symmetries that hold for relations between events). A gauge field that is introduced

in this manner takes the formal role of a connection on a principal bundle represent-

ing the internal degree of freedom over spacetime manifold. Namely, it is a mathe-

matical structure that gives meaning to the notion of ‘the same phase’ in different

locations.

Teller ([1997]) noted the mystery posed by the gap between the understanding of

gauge as a matter of labelling, linguistic conventions, and its ‘dramatic repercus-

sions’ as a concept that imposes the introduction of new physical fields into the

equations. Furthermore, Brown ([1999]) noted that the requirement for local gauge

covariance can only explain a flat connection. It cannot explain the interaction that

acts on the particle through the curvature. Neither can it account for the other direc-

tion of the interaction, namely the action of the particle on the field. Lyre ([2000])

extended this criticism: ‘in order to obtain the full Dirac–Maxwell theory we need a

truly physical principle. Otherwise, there remains a “missing link”—at least from

the foundational point of view’. Without an additional physical principle, there is

no reason for identifying the connection that appears in the gauge covariant deriv-

ative with a particular physical field, nor can the requirement for gauge covariance

dictate the existence of such a field (Healey [2007]). With no such principle avail-

able, the best way to understand the gauge principle is heuristically (Martin [2002]).

This article attempts to address these worries on two levels. The first is an account

of the methodology. The gauge argument, as presented here, does set off from the view

of gauge transformations as a change of description that transforms one quantum-

theoretical representation of a physical state into another representation. This pas-

sive view motivates the attempt to look for a dynamical law that is invariant under the

transformations, and to modify existing theories whose laws are not gauge-invariant.

The gauge argument is thus described as a combination of theoretical symmetry prin-

ciple and a methodological step motivated by it.

As long as no reference is made to some contingent property of the world, the

account is not sufficient for resolving the aforementioned worries. On the second

level, therefore, I claim that the success of the gauge argument is anchored in the re-

lational nature of the physical quantities described by gauge-dependent variables.
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This physical view of gauge is based on the account by Rovelli ([2014]): ‘Gauge in-

variance is not just mathematical redundancy; it is an indication of the relational

character of fundamental observables in physics. These do not refer to properties

of a single entity. They refer to relational properties between entities: relative veloc-

ity, relative localization, relative orientation in internal space, and so on’. This rela-

tional nature is exploited by the methodological principle suggested here, that is

based on active transformations that change the relation between the system and

an external object. The original interaction-free theory is expressed in terms of gauge

dependent dynamical variables that represent relations between a physical field and a

mathematical connection, a generalization of the concept of a frame of reference.

The methodological step replaces these variables with gauge invariant variables that

are naturally interpreted as relations between two physical fields. The result is a the-

ory whose dynamics and empirical content are gauge invariant; the symmetry prin-

ciple that was violated by the interaction-free theory, is now satisfied.

To understand the gauge principle in this light, we must distinguish between two

distinct questions: (i) Why is the theory of interacting fields invariant under certain

transformations, whereas the theory of the free field is not? (ii) Why are the relevant

transformations local (coordinate dependent)?

Our answer to the first question is that a theory that disregards relations between

the system it describes and other relevant physical objects cannot reveal a complete

picture of the symmetries. In a Machian universe, the invariance of the laws to pas-

sive rotations is only revealed in the theory of the whole universe, since the relations

between all pairs of objects are relevant. The physical properties of a field depend on

its relations to other fields. A gauge transformation that acts on two fields, such as

w xmð Þ→ eiL xmð Þw xmð Þ, Am → Am 1
ℏc

q
∂mL, (21)

is a passive transformation of the coupled system. It acts on both fields and maintains

the physical relations between them (similar to the transformation in Equation (12)

on the system itself and the object to which it is coupled). In contrast, the transfor-

mation w(xm)→ eiL(x
m)w(xm) (or an equivalent transformation of the operators in the

Heisenberg picture) actively changes the relation between w and Am and is therefore

not a symmetry transformation of the theory ofw. In the same way, Equation (6) is not

a symmetry of Equation (8), and an active rotation of the bucket and the water is not

a symmetry transformation in Newtonian mechanics.

As for the second question, this account suggests that the relevant symmetry is

local due to the quantum structure of the world. Quantum theory identifies different

locations as different components of the superposition. The relational nature of the

phase is expressed in the assumption that jfi and eiJjfi can represent the same phys-

ical state. The assumption is valid regardless of whether the actual state is jfi or a su-
perposition of jfi and other states. Eigenstates of position are no exception. Indeed,

the relevance of the quantum structure of the world to gauge theories was already
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recognized when both quantum mechanics and the very idea of gauge were newly

born (Weyl [1929]; London [1997]).6

Formally, a passive local phase transformation is a change of the connection form

of the principal U(1) bundle over spacetime manifold. The methodological princi-

ple implies that every such transformation is postulated to correspond to an active

transformation of the state with respect to an external physical field. The entity with

respect to which phases are shifted is now a physical field, instead of a mathemati-

cal connection. Passive phase transformations cannot change gauge invariant quan-

tities that characterize the bundle, such as local curvature and holonomies. The pos-

sible active transformations, in contrast, are not restricted in this way as the state of

the field is arbitrary and dynamically changing. There are therefore active transfor-

mations that have no passive parallel. They reflect new phenomena generated by

the interaction, ones that cannot be described by the interaction-free theory. These

phenomena, as was noted by Brown ([1999]), are indeed not a consequence of the

requirement for local gauge covariance. The role of this requirement is methodo-

logical: it guides the construction of the correct mathematical object (connection)

that can be generalized to a mathematical description of the field that describes the

interaction.

5.2. Interpretation and observability of gauge symmetries

The question of whether gauge symmetry transformations can be observed has been

debated among several thinkers (Kosso [2000]; Brading and Brown [2004]; Healey

[2009]; Greaves and Wallace [2014]; Friederich [2014]). The question, formulated

by Kosso, concerns direct observability. For an experiment to be considered a direct

observation of a symmetry transformation, two facts have to be independently ver-

ified empirically. First, wemust verify that the given transformation has indeed taken

place, that something has changed in the world. Second, we must also verify that the

transformation is an invariance, meaning that the same laws apply to the new situa-

tion. In large part, the debate revolves around the question, also discussed below, of

whether the version of the double-slit experiment presented by ’t Hooft ([1980]) can

be regarded as an observation of gauge symmetry.

Kosso’s definition means that as long as gauge transformations are regarded as no

more than passive changes of the mathematical representation, it is meaningless to

discuss direct observations of them. Observability requires a notion of an active

change in the world.

In the different examples discussed in this article, there are several cases in which a

passive transformation has a parallel active transformation. For example, it is agreed

6 The main reason that the idea of gauge is now considered distinct from quantum theory is probably its
applicability to interactions between classical fields. Yet, this applicability can be due to the underlying
quantum nature of the physical objects that the classical fields represent.
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that Galileo’s ship experiment is the active parallel of a passive uniform boost. But

what exactly does that mean?

My answer to this question is different from the common approach. I propose that

a passive transformation of a theory that describes a certain physical situation can

only correspond to an active transformation in a theory that describes a different, ex-

tended, situation. I start from a passive transformation applied within a theory that

describes a given system that does not interact with anything external. The theory

in Equation (5) of the N 1 1 particles is one example, and the Schrödinger theory

of an isolated quantum particle in a pure state is another. To obtain a theory with

the corresponding active transformation, two steps must be taken. First, the existence

of an external object is postulated. Second, the original system is represented in a

frame of reference that is defined in someway by the system’s relation to the external

object. Thus a change in the relation between the external object and the system cor-

responds to a change of the frame of reference in which the original system is rep-

resented, and a correspondence is established between each passive symmetry (of

the theory describing the system) and a particular active transformation (which may

or may not be a symmetry of the theory that describes the system together with the

external object). This definition requires some preferred isomorphism between the

possible relations of the system and the external object, and the possible representa-

tions of the system. In the toyMachian theory described in Section 3, for example, this

can be achieved by fixing the origin to the external object, so that the absolute coor-

dinate of each of the particles of the original system reflects its distance from the ex-

ternal object.

Take, for example, a single-slit experiment in which single electrons go through a

slit of narrow width and form a diffraction pattern on the other side. The propagation

of the wave function through the slit is described by the Schrödinger equation. A

global phase transformation is a kinematical symmetry, since it is a replacement

of the same physical state (a point on the projective Hilbert space) with another rep-

resentation of the same state. It is also a dynamical symmetry, as the Schrödinger

equation is invariant under global phase transformations. The active version of this

symmetry can be observed. To do this, we can open a second slit through which the

wave function propagates, and use the wave packet coming through the second slit

as an ‘external object’.7 In the region close enough to the first slit there is no overlap

with the wave-packet propagating through the second slit, and it can be observed

(through repeated experiments) that in this region inserting the phase shifter makes

no observable change. But in a region further away from the two slits the form of the

interference pattern between the two wave-packets depends on the presence of the

phase shifter. Thus the phase shift is observable, and the invariance of the isolated

wave to the phase shift is observable as well.

7 As suggested by Greaves andWallace ([2014]), but not as in the original suggestion of ’t Hooft, ([1980]).
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This analysis therefore leads to an agreement with Greaves and Wallace that this

experiment can be regarded as a direct analogue of Galileo’s ship. However, the sym-

metry that we claim that is observed is the active parallel of the global phase trans-

formation symmetry, not the local one.8 The phase shifter acts globally on the entire

original ‘system’ (the single slit).9

Before I turn to consider the question of the observability of local phase transfor-

mations and gauge transformations, it is instructive to go back to the toy model pre-

sented in Section 3 and ask whether the symmetry of the model, the arbitrary change

of frame of reference, is directly observable in the same sense that invariance to

global phase transformation is observable through the double-slit experiment. The

answer turns out to be negative. Equation (7) is the equation of motion of the system.

It is invariant under an arbitrary change of frame of reference (6). Yet, as we have

seen, when we add an external object, Equation (7) is no longer valid. The active

parallel of Equation (6), in which the relation between the system and its environ-

ment changes, is not a symmetry transformation. For this reason, even after the

physicists in the example have discovered the full, correct equation of motion of

their universe in Equation (9), and even if they can directly measure the environment

variable X (t), there can be no direct observation of the symmetry. Indeed, the phys-

icists would notice that all their observations can be accurately predicted with a law

that is invariant under Equation (12). But despite this indirect evidence, there will be

no ‘Galilean ship’ type of experiment for this symmetry. This should come as no

surprise, since clearly, from the way the model was constructed, this symmetry is

in itself not a property of the world, but only of the way it is represented.

The same model does contain a different symmetry transformation that can be ob-

served. It is of course the Galilean boost x→ x 1 vt. Not only it is a kinematical and

dynamical symmetry (since it is a special case of the general symmetry), but it is also

an active symmetry. The internal dynamics of the system (Equation 10) does not

change under the transformation xi → xi 1 vt that would be applied to all of the par-

ticles. The reason this transformation is a directly observable symmetry is simply

that the equations of motion do not explicitly depend on velocity. Similarly, the

global phase transformation can be observed in the double-slit experiment because

the Schrödinger equation of a particle depends on the local phase gradient, not on the

phase difference between spatially separated wave packets.

8 Similarly, an analogous analysis would lead to the conclusion that Faraday’s cage experiment should be
regarded as a direct observation of global gauge transformation.

9 Friederich ([2014]) provides a detailed account, similarly concluding that adopting the framework pro-
vided by Greaves and Wallace ([2014]) does not lead to their conclusion that local gauge symmetries are
observable. According to Friederich, the phase shifter in ’t Hooft’s beam splitter experiment can be seen
as changing the state of the environment, rather than the state of the wave-function that passes through the
slit. Friederich’s analysis thus shows that in the analysis of the experiment in Greaves’s and Wallace’s
framework, it is underdetermined whether it is the state of the system that changes or the state of the en-
vironment. The claim above, stating that what actually changes is the relation between the system and the
environment, naturally dissolves this underdetermination.
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Local phase transformations are not observable symmetry transformations for the

same reason that a non-Galilean boost is not an observable symmetry transformation

in this toy theory. In both cases, the active parallel—the transformation that is ap-

plied to a subsystem—is generally not a symmetry transformation at all.

The relevant transformation that is a symmetry transformation is the full gauge

transformation in Equation (21). None of the examples brought in the articles cited

above can be regarded as an active version of this transformation that is applied to a

system with respect to another system. Clearly, a spatial separation of the world into

a region that is transformed and a region that is not leaves us with a special case of

Equation (21), and can therefore not be regarded as an active version of it. Local

gauge transformations can therefore not be subjected to a direct observation.

The present article thus supports the accepted view that a gauge transformation of

the electromagnetic potentials together with the quantum wave-function does not

imply any physical change.

The passive view of gauge transformations as changes of representation is thus

seen not to conflict with our ability to construct new, successful theories using the

gauge argument. The pursuit of gauge covariance is an attempt to extend our knowl-

edge using empirical considerations together with the theoretic symmetry principle.

The success of the principle is anchored in contingent properties of physical interac-

tions. I hope that this article contributes to dispel the worries of ‘the paradox of a

ghost or figment of our imagination turning the wheels of the real world’ (Ben-

Menahem [2012]). The gauge argument should neither be understood as a miracle

nor as a mathematical deduction, but as a well-calculated guess.
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